RedBoot™ User’s Guide

Document Version 2.04, February 2007
© 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0
or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copy-
right holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder.

http://www.opencontent.org/openpub/

Copyright

Red Hat, the Red Hat Shadow Man logo®, eCos™, RedBoot™, GNUPro®, and Insight™ are trade-
marks of Red Hat, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun
Microsystems, Inc.

Intel® is a registered trademark of Intel Corporation.

Motorola™ is a trademark of Motorola, Inc.

ARMP® is a registered trademark of Advanced RISC Machines, Ltd.
Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of The Open Group.

Microsoft®, Windows®, and Windows NT® are registered trademarks of Microsoft Corporation,
Inc.

All other brand and product names, trademarks, and copyrights are the property of their respective
owners.

Warranty

eCos and RedBoot are open source software, covered by the eCos Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted
by applicable law. Except when otherwise stated in writing, the copyright holders and/or other
parties provide the software “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the software is with you. Should the
software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out
of the use or inability to use the program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate
with any other programs), even if such holder or other party has been advised of the possibility of
such damages.

Contents

RedBoot™ User’s Guide

Copyright
Warranty........

Chapter 1
1.1
1.2
1.3
1.4

Chapter 2
2.1
2.2
2.3

24
2.5
26

Chapter 3
3.1

Chapter 4
4.1

.. 2
.. 3
Getting Started with RedBoot... 6
More information about RedBootontheweb.................co 6
Installing RedBoOOto 6
USEr I eI ace . . .o s 7
Configuring the RedBoot Environment ... 7
1.4.1 Target Network Configuration..............ooi e 7
1.4.2 Host Network Configuration. ... 8

1.4.21 Enable TFTPon Red HatLinux6.2......................oooiiiits 9

1422 Enable TFTPon Red HatLinux 7 ... 9

1423 Enable BOOTP/DHCP server on Red Hat Linux..................... 9

1424 Enable DNS serveron Red Hat Linux ..., 10

14.2.5 RedBoot network gateway ... 11
T.4.3 Verification ... 11
1.4.4 Multiple Network DEVICES e 12
RedBoot Commands and Examples..................................... 13
INtrOdUCH ON. . . s 13
RedBoot Editing Commandsuuuiiiii e 14
Common COMMEANGS et 15
2.3 CONNECHVIEY. .t s 16
2.3.2 GBNEIAL. ... s 16
2.3.3 Download ProCessooooi i 19
Flash Image System (FIS). ..o e 20
Persistent State Flash-based Configuration and Control....................cccoiiiiiiaa.. 23
Executing Programs from RedBoot. ... 27
Rebuilding RedBoot.. 29
I OAUCHION. . . 29
3.1.1 Configuration exportfiles ... 30

3.1.1.1 Making RedBoot for RAM startup ..., 30
3.1.2 Platform specific inStructionscooii i 31
Updating RedBoot... 32
INtrOdUCH ON. . . 32
4.1.1 Start RedBoot, Running from flash...................cooooi i 32
4.1.2 Load and start a different version of RedBoot, running from RAM 32
4.1.3 Update the primary RedBoot flashimage.......................oooiiiiiiiiiiinn, 33
414 Reboot; run RedBoot fromflash........ ... i 34

Chapter 5 Installationand Testing ... 35

5.1 Intel Xscale IXDP465 Evaluation Board. ... 35
ST R N O 1 1 35
5.1.2 Initial Installation Method....... ... 35
B5.1.3 LED COUES ..ottt et e e 35
5.1.4 Special RedBoot Commands ... 36
5.1.5 Rebuilding RedBoOot ... 37
5.6 N eITUPES . .o 37
5.7 MemMOrY Maps ..ot 38
5.1.8 Platform Resource Usage.uiiiiiiiiiiii i 39
5.2 Intel(r) Next Generation of Network Processors (Code Name Hamoa)
Reference Platform 39
5.2 OVEIVIBW .o e 39
5.2.2 Initial Installation Method....... ... 39
B5.2.3 LED COGES ...ttt et ettt e 40
524 Rebuilding RedBoOot ... 41
5. 2.8 I erTUPES .o 41
5.2.8 MemOrY Maps ...t e 42
5.2.7 Platform Resource Usage.ccooiiiiiiiiiiii e 43
5.3 Intel Xscale IXDP425 Network Processor Evaluation Board.....................ooooiiit 44
ST TR B O 1= 1 44
5.3.2 Initial Installation Method...... ... 44
B5.3.3 LED COUES ..ottt et e 44
5.3.4 Special RedBoot Commands ... 45
5.3.5 Rebuilding RedBoOtt 45
5.3.6 INteITUPES . ..o 46
5.3.7 MemOrY Maps ...ttt e 46
5.3.8 Platform Resource Usage.uuiiiiiiiiiii i 47
54 Intel Xscale Generic Residential Gatewayo 48
ST O O 1Y 1 48
5.4.2 Initial Installation Method....... ... 48
5.4.3 Rebuilding RedBOOt ... 48
LS |] (=4 1] o) 49
5.4.5 MemMOrY Maps ...t e 49
5.4.6 Platform Resource Usage.coooiiiiiiiiiiiii e 50
5.5 Intel IXDPG425 Network Gateway Reference Platform 51
5.5 OVEIVIBW ..o e 51
5.5.2 Initial Installation Method....... ... 51
5.5.3 Rebuilding RedBOOt ... 51
.54 N eITUPES . ..o 52
5.5.5 MemOry Maps ..o 52
5.5.6 Platform Resource Usage.uiiiiiiiiii i 53
Example 1—1 Sample DHCP configuration file 9
Example 1-2 Sample /etc/named.conf for Red Hat Linux 7.X.........oiiiii 10

1 Getting Started with RedBoot

RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap", and is the standard em-
bedded system debug/bootstrap environment from Red Hat, replacing the previous generation of
debug firmware: CygMon and GDB stubs. It provides a complete bootstrap environment for a
range of embedded operating systems, such as embedded Linux and eCos™, and includes facilities
such as network downloading and debugging. It also provides a simple flash file system for boot
images.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target
systems, as well as tools for manipulating the target system’s environment. It can be used for both
product development (debug support) and for end product deployment (flash and network booting).

Here are some highlights of RedBoot’s capabilities:

* Boot scripting support

* Simple command line interface for RedBoot configuration and management, accessible via
serial (terminal) or Ethernet (telnet)

» Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet
connectivity is limited to local network only)

» Attribute Configuration - user control of aspects such as system time and date (if applicable),
default Flash image to boot from, default failsafe image, static IP address, etc.

» Configurable and extensible, specifically adapted to the target environment

» Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP
* X/YModem support for image download via serial

* Power On Self Test

Although RedBoot is derived from eCos, it may be used as a generalized system debug and boot-
strap control software for any embedded system and any operating system. For example, with
appropriate additions, RedBoot could replace the commonly used BIOS of PC (and certain other)
architectures. Users who specifically wish to use RedBoot with the eCos operating system should
refer to the Getting Started with eCos document, which provides information about the portability
and extendability of RedBoot in an eCos environment.

1.1 More information about RedBoot on the web

Information about RedBoot, including downloadable sources and documentation with the latest
features and updates is available from RedBoot Project Page.

1.2 Installing RedBoot
To install the RedBoot package, follow the procedures detailed in the accompanying README.

Although there are other possible configurations, RedBoot is usually run from the target platform’s
flash boot sector or boot ROM, and is designed to run when your system is initially powered on.
The method used to install the RedBoot image into non-volatile storage varies from platform to

http://ecos.sourceware.org/redboot/

platform. In general, it requires that the image be programmed into flash in situ or programmed
into the flash or ROM using a device programmer. In some cases this will be done at manufacturing
time; the platform being delivered with RedBoot already in place. In other cases, you will have
to program RedBoot into the appropriate device(s) yourself. Installing to flash in situ may require
special cabling or interface devices and software provided by the board manufacturer. The details
of this installation process for a given platform will be found in Installation and Testing. Once
installed, user-specific configuration options may be applied, using the f conf i g command, pro-
viding that persistent data storage in flash is present in the relevant RedBoot version. See Section
1.4 for details.

1.3 User Interface

RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally
available on a serial port on the platform. If more than one serial interface is available, RedBoot
is normally configured to try to use any one of the ports for the CLI. Once command input has
been received on one port, that port is used exclusively until reset. If the platform has networking
capabilities, the RedBoot CLI is also accessible using the t el net access protocol. By default,
RedBoot runs t el net on port TCP/9000, but this is configurable and/or settable by the user.

RedBoot also contains a set of GDB "stubs", consisting of code which supports the GDB remote
protocol. GDB stub mode is automatically invoked when the ’$’ character appears anywhere on a
command line unless escaped using the ’\’ character. The platform will remain in GDB stub mode
until explicitly disconnected (via the GDB protocol). The GDB stub mode is available regardless
of the connection method; either serial or network. Note that if a GDB connection is made via the
network, then special care must be taken to preserve that connection when running user code. eCos
contains special network sharing code to allow for this situation, and can be used as a model if this
methodology is required in other OS environments.

1.4 Configuring the RedBoot Environment

Once installed, RedBoot will operate fairly generically. However, there are some features that
can be configured for a particular installation. These depend primarily on whether flash and/or
networking support are available. The remainder of this discussion assumes that support for both
of these options is included in RedBoot.

1.4.1 Target Network Configuration

Each node in a networked system needs to have a unique address. Since the network support in
RedBoot is based on TCP/IP, this address is an IP (Internet Protocol) address. There are two ways
for a system to “know” its IP address. First, it can be stored locally on the platform. This is known
as having a static IP address. Second, the system can use the network itself to discover its IP
address. This is known as a dynamic IP address. RedBoot supports this dynamic IP address mode
by use of the BOOTP (a subset of DHCP) protocol. In this case, RedBoot will ask the network
(actually some generic server on the network) for the IP address to use.

A NLLTN

NOTE

Currently, RedBoot only supports BOOTP. In future releases, DHCP may also be supported,
but such support will be limited to additional data items, not lease-based address allocation.

The choice of IP address type is made via the f conf i g command. Once a selection is made, it
will be stored in flash memory. RedBoot only queries the flash configuration information at reset,
so any changes will require restarting the platform.

Here is an example of the RedBoot f conf i g command, showing network addressing:

RedBoot > fconfig -1

Run script at boot: false

Use BOOTP for network configuration: false
Local | P address: 192.168.1.29

Default server |P address: 192.168.1.101
DNS server |P address: 192.168.1.1

GDB connection port: 9000

Net wor k debug at boot tine: false

In this case, the board has been configured with a static IP address listed as the Local IP address.
The default server IP address specifies which network node to communicate with for TFTP service.
This address can be overridden directly in the TFTP commands.

The DNS server | P address option controls where RedBoot should make DNS lookups. A
setting of 0.0.0.0 will disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection for Use BOOTP for network configuration hadbeentrue, these IP
addresses would be determined at boot time, via the BOOTP protocol. The final number which
needs to be configured, regardless of IP address selection mode, is the GDB connecti on port.
RedBoot allows for incoming commands on either the available serial ports or via the network. This
port number is the TCP port that RedBoot will use to accept incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot
commands. In particular, it is possible to communicate with RedBoot via the telnet protocol. For
example, on Linux®:

%t el net redboot _board 9000
Connect ed to redboot _board
Escape character is ‘"]’.
RedBoot >

1.4.2 Host Network Configuration

RedBoot may require three different classes of service from a network host:
* dynamic IP address allocation, using BOOTP
» TFTP service for file downloading

* DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default.
See your system documentation for more details.

In particular, on Red Hat Linux, neither of these services will be configured out of the box. The
following will provide a limited explanation of how to set them up. These configuration setups
must be done as r 00t on the host or server machine.

1.4.2.1 Enable TFTP on Red Hat Linux 6.2

1. Ensure that you have the tftp-server RPM package installed. By default, this installs the TFTP
server in a disabled state. These steps will enable it:

2. Make sure that the following line is uncommented in the control file / et ¢/ i net d. conf
tftp dgram udp wai t r oot [usr/shin/tcpd lusr/sbin/in.tftpd
3. If it was necessary to change the line in Step 2, then the inetd server must be restarted, which
can be done via the command:

service inet rel oad

1.4.2.2 Enable TFTP on Red Hat Linux 7

1. Ensure that the xinetd RPM is installed.
2. Ensure that the tftp-server RPM is installed.
3. Enable TFTP by means of the following:

/ sbin/ chkconfig tftp on

Reload the xinetd configuration using the command:

/sbin/service xinetd rel oad

Create the directory /tftpboot using the command
nkdir /tftpboot

% NOTE

Under Red Hat 7 you must address files by absolute pathnames, for example: /tft p-
boot / boot . i ng not/ boot . i ng, as you may have done with other implementations.

1.4.2.3 Enable BOOTP/DHCP server on Red Hat Linux

First, ensure that you have the proper package, dhcp (not dhcpd) installed. The DHCP server
provides Dynamic Host Configuration, that is, IP address and other data to hosts on a network.
It does this in different ways. Next, there can be a fixed relationship between a certain node and
the data, based on that node’s unique Ethernet Station Address (ESA, sometimes called a MAC
address). The other possibility is simply to assign addresses that are free. The sample DHCP con-
figuration file shown does both. Refer to the DHCP documentation for more details.

Example 1-1 Sample DHCP configuration file

--------------- /etc/dhcpd.conf ---------oommoa
defaul t-1 ease-ti me 600;
max- | ease-ti ne 7200;

opti on subnet-mask 255.255. 255. 0;
opti on broadcast-address 192.168. 1. 255
opti on donai n-nane-servers 198.41.0.4, 128.9.0.107;
opti on donai n-nane “bogus. conf;
al | ow boot p;
shar ed- net wor k BOGUS {
subnet 192.168. 1.0 netnmask 255.255.255.0 {
option routers 192.168. 1. 101,
range 192.168.1.1 192.168. 1. 254;

}

}
host mbx {
har dwar e et hernet 08:00: 3E: 28: 79: BS;
fi xed-address 192.168. 1. 20;
filename “/tftpboot/192.168. 1. 21/zl mage”;
default-|lease-tine -1
server-nane “srvr.bugus. coni;
server-identifier 192.168.1.101;
opti on host-name “nmbx”

}
Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

1.4.2.4 Enable DNS server on Red Hat Linux

First, ensure that you have the proper RPM package, cachi ng- naneser ver installed. Then
change the configuration (in/ et ¢/ named. conf) so that the f or war der s point to the primary
nameservers for your machine, normally using the nameservers listed in/ et ¢/ r esol v. conf .

Example 1-2 Sample / et ¢/ naned. conf for Red Hat Linux 7.x

--------------- /etc/named.conf ------------aoooooo oo
/1 generated by naned-boot conf. pl

options {
directory "/var/ nanmed"
/*
* |f there is a firewall between you and nanmeservers you want
* to talk to, you might need to uncoment the query-source
* directive below. Previous versions of BlIND al ways asked
* questions using port 53, but BIND 8.1 uses an unprivil eged
* port by default.
*/
/1 query-source address * port 53

forward first;

forwarders {
212.242.40. 3
212.242. 40. 51,

s
s
I
/1 a caching only naneserver config
I

/1 Uncoment the followi ng for Red Hat Linux 7.2 or above
/1 controls {

10

/1 inet 127.0.0.1 allow { local host; } keys { rndckey; };
I}
/1 include "/etc/rndc. key";
zone "." IN {
type hint;
file "naned.ca";

}s

zone "local host" IN {
type master;
file "l ocal host.zone";
al | ow update { none; };

}s

zone "0.0.127.in-addr.arpa" IN {
type master;
file "naned.|ocal ";
al | ow- update { none; };

Make sure the server is started with the command:

service naned start

and is started on next reboot with the command
chkconfi g naned on

Finally, you may wish to change / et ¢/ r esol v. conf touse 127. 0. 0. 1 as the nameserver
for your local machine.

1.4.2.5 RedBoot network gateway

RedBoot cannot communicate with machines on different subnets because it does not support rout-
ing. It always assumes that it can get to an address directly, therefore it always tries to ARP and
then send packets directly to that unit. This means that whatever it talks to must be on the same
subnet. If you need to talk to a host on a different subnet (even if it’s on the same ‘wire’), you need
to go through an ARP proxy, providing that there is a Linux box connected to the network which
is able to route to the TFTP server. For example: / pr oc/ sys/ net/i pv4/ conf/<inter-
face>/ proxy_arp where <interface>should be replaced with whichever network interface is
directly connected to the board.

1.4.3 Verification

Once your network setup has been configured, perform simple verification tests as follows:

* Reboot your system, to enable the setup, and then try to ‘ping’ the target board from a host.

* Once communication has been established, try to ping a host using the RedBoot ping command
- both by IP address and hostname.

* Try using the RedBoot load command to download a file from a host.

11

1.4.4 Multiple Network Devices

RedBoot may support more than one network device. For instance a dual port NIC may be used or
multiple PCI based NICs may be supported. RedBoot will only use one network device no matter
how many are configured into the system. Preference for the device to use may be specified with
the f conf i g command. Suppose that a RedBoot is configured for two 182559 based NICs. These
devices will typically be named i 82559 et h0 and i 82559 _et h1l. To tell RedBoot to try the
ethl device first, use:

RedBoot > fconfig net_device

net _devi ce: 182559 ethl
Updat e RedBoot non-volatile configuration - continue (y/n)? vy

If the default network device is not found, RedBoot will search for other network devices and use
the first one found. Please see the platform specific documentation sections of this manual for
details on the network devices and their names supported by a specific platform.

12

2 RedBoot Commands and Examples

2.1 Introduction

RedBoot provides three basic classes of commands:
* Program loading and execution
» Flash image and configuration management
* Miscellaneous commands
Given the extensible and configurable nature of eCos and RedBoot, there may be extended or en-
hanced sets of commands available.
The basic format for commands is:
RedBoot > COWAND [-S] [-s val]operand
Commands may require additional information beyond the basic command name. In most cases

this additional information is optional, with suitable default values provided if they are not present.
The type of information required affects how it is specified:

[-9]
An optional switch. If this switch is present, then some particular action will take place. For ex-
ample in the command
RedBoot> fis init -f

the -f switch indicates to perform a full file system initialization.

[-s val]

An optional switch which requires an associated value. For example the command:
RedBoot > | oad -b 0x00100000 data_file

specifies downloading a file (via TFTP) into memory, relocating it to location 0x00100000.

oper and

This format is used in a case where a command has one operand which must always be present (no
-s 1s required since it is always implied). For example the command

RedBoot > go 0x10044
specifies executing the code starting at location 0x10044.

The list of available commands, and their syntax, can be obtained by typing hel p at the command
line:

RedBoot > hel p
Manage al i ases kept in FLASH nmenory
al i as nane [val ue]
Set/ Query the system consol e baud rate
baud [-b <rate>]
Manage nachi ne caches
cache [ON | OFF]
Di spl ay/ switch consol e channel
channel [-1]| <channel nunber>]

13

Di splay disk partitions
di sks
Set/ Query DNS server |P address
dns [P]
Di spl ay (hex dunmp) a range of nenory
dunp -b <location> [-] <length>] [-s]
Manage fl ash inmages

fis {cmds}
Manage configuration kept in FLASH nenory
fconfig [-i] [-I] [-n] [-f] [-d] | [-d] nickname [val ue]

Execute code at a | ocation
go [-w <timeout>] [entry]
Hel p about hel p?
hel p [<t opi c>]
Set/change | P addresses
i p_address [-| <local _ip_address>] [-h <server_address>]
Load a file
load [-r] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | xyzMODEM | di sk}]
[-b <base_address>] <file_nane>
Net wor k connectivity test

ping [-v] [-n <count>] [-t <timeout>] [-i <IP_addr]
-h <host >
Reset the system
reset
Di spl ay RedBoot version information
version
Di spl ay (hex dump) a range of menory
X -b <location> [-] <length>] [-5s]

Commands can be abbreviated to their shortest unique string. Thus in the list above, d, du, dum
and dump are all valid for the dump command. The f conf i g command can be abbreviated f C,
but f would be ambiguous with fi s.

There is one additional, special command. When RedBoot detects *$’* or *+’ (unless escaped via
’\”) in a command, it switches to GDB protocol mode. At this point, the eCos GDB stubs take over,
allowing connections from a GDB host. The only way to get back to RedBoot from GDB mode is
to restart the platform.

NOTE
Multiple commands may be entered on a single line, separated by the semi-colon ;” character.

The standard RedBoot command set is structured around the bootstrap environment. These com-
mands are designed to be simple to use and remember, while still providing sufficient power and
flexibility to be useful. No attempt has been made to render RedBoot as the end-all product. As
such, things such as the debug environment are left to other modules, such as GDB stubs, which
are typically included in RedBoot.

The command set may be also be extended on a platform basis.

2.2 RedBoot Editing Commands

RedBoot uses the following line editing commands.

14

A NLLTN

NOTE

In this description, AA means the character formed by typing the letter “A” while holding down
the control key.

* Delete (0x7F) or Backspace (0x08) erases the character to the left of the cursor.
* AA moves the cursor (insertion point) to the beginning of the line.

* K erases all characters on the line from the cursor to the end.

* AE positions the cursor to the end of the line.

* 2D erases the character under the cursor.

* AF moves the cursor one character to the right.

* 2B moves the cursor one character to the left.

» Apreplaces the current line by a previous line from the history buffer. A small number of lines
can be kept as history. Using *P (and "N), the current line can be replaced by any one of the
previously typed lines.

» AN replaces the current line by the next line from the history buffer.

In the case of the f conf i g command, additional editing commands are possible. As data are
entered for this command, the current/previous value will be displayed and the cursor placed at the
end of that data. The user may use the editing keys (above) to move around in the data to modify

it as appropriate. Additionally, when certain characters are entered at the end of the current value,
i.e. entered separately, certain behavior is elicited.

* " (caret) switch to editing the previous item in the f confi g list. If fconfig edits item A,
followed by item B, pressing * when changing item B, allows you to change item A. This is
similar to the up arrow. Note: P and "N do not have the same meaning while editingf confi g
data and should not be used.

* . (period) stop editing any further items. This does not change the current item.

* Return leaves the value for this item unchanged. Currently it is not possible to step through the
value for the start-up script; it must always be retyped.

2.3 Common Commands

The general format of commands is:

command <options, paraneters>

Elements are separated by the space character. Other control characters, such as Tab or editing keys
(Insert) are not currently supported.

Numbers, such as a memory location, may be specified in either decimal or hexadecimal (requires
a 0x prefix).

Commands may be abbreviated to any unique string. For example, | 0 is equivalent to | 0oa and
| oad.

15

2.3.1 Connectivity
dns [IP]

This command is used to show/change the IP address used for DNS lookups. If an IP address
0f 0.0.0.0 is entered, DNS lookups are disabled.

ip_address [-]1 <local_ip_address>] [-h <server_address>|

This command is used to show/change the basic IP addresses used by RedBoot. The -1 option
is used to set the IP address used by the target device. The -h option is used to set the default
server address, such as is used by the | oad command.

ping - Check network connectivity ping

ping [-v] [-n <count>] [-| <length>] [-t <tinmeouts>] [-r
<rate>][-i <IP_addr>] -h <IP_addr>

The ping command checks the connectivity of the local network by sending special (ICMP)
packets to a specific host. These packets should be automatically returned by that host. The
command will indicate how many of these round-trips were successfully completed.

Arguments

-V Be verbose, displaying information about each packet sent.

-n <count> Controls the number of packets to be sent. Default is 10 if -n is
not specified.

-t <timeout> How long to wait for the round-trip to complete, specified in
milliseconds. Default is 1000ms (1 second).

-r <rate> How fast to deliver packets, i.e. time between successive sends.
Default is 1000ms (1 second). Specifying "-r 0" will send packets
as quickly as possible.

-1 <length> Each packet contains some amount of payload data. This option
specifies the length of that data. The default is 64 and the value is
restricted to the range 64 .. 1400.

-1 <local IP> This allows the ping command to override its local network
address. While this is not recommended procedure, it can help
diagnose some situations, for example where BOOTP is not
working properly.

-h <host> The hostname or IP address of the other device to contact.

2.3.2 General

alias name [value]

16

The al i as command is used to maintain simple command line aliases. These aliases are
shorthand for longer expressions. When the pattern %{name} appears in a command line,
including a script, the corresponding value will be substituted.

Aliases are kept in RedBoot’s non-volatile configuration area, i.e. Flash memory.

This is an example of setting an alias. Notice the use of a quoted string when the value contains
spaces.

RedBoot > alias SBUF "-b 0x100000"
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Unl ock from 0x50f 80000- 0x50f c0000:
Erase from 0x50f 80000- 0x50f c0000: .
Pr ogram from 0x0000b9e8- 0x0000c9e8 at 0x50f 80000:
Lock from Ox50f 80000- 0x50f c0000:

This example shows querying of an alias, as well as how it might be used.

RedBoot > al i as SBUF

"SBUF = "'-b 0x100000’

RedBoot > d % SBUF}

0x00100000: FEO3 OOEA 0000 0000 0000 0000 0000 0000 [|

0x00100010: 0000 0000 0000 0000 0000 0000 0000 0000 [oo |
baud [-b value]

This command sets the baud rate for the system serial console. If the platform supports non-
volatile configuration data, then the new value will be saved and used when the system is reset.

cache [ON | OFF]
This command is used to manipulate the caches on the processor.
With no options, this command specifies the state of the system caches.
When an option is given, the caches are turned off or on appropriately.
channel [-1|<channel number>]
With no arguments, this command displays the current console channel number.

When passed an argument of 0 upwards, this command switches the console channel to that
channel number. The mapping between channel numbers and physical channels is platform
specific.

When passed an argument of -1, this command reverts RedBoot to responding to whatever
channel receives input first, as happens when RedBoot initially starts execution.

cksum -b <location> -1 <length>

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The value
printed can be compared with the output from the Linux program ’chksum’.

mfill -b <location> -1 <length> [-p <pattern>] [-1|-2|-4]

Fills a range of memory with the given pattern. If the pattern is ommitted, then a value of zero
is used. The options -1, -2, -4 are used to select the length of the objects used while
filling. For example, - 2 selects to fill 16 bits at a time, etc.

mcmp -s <location> -d <location> -1 <length> [-1|-2|-4]

17

Compares two ranges of memory. The options - 1,

-2,

- 4 are used to select the length of

the objects used while comparing. For example, - 2 selects to compare 16 bits at a time, etc.

swab -b <location> -1 <length> [-2|-4]

Swap bytes in a block of 16-bit or 32-bit words. The options - 2,

- 4 are used to select the

length of the words to be byte-swapped. For example, - 2 selects to swap bytes inside 16 bit
words, etc.

disks

This command is used to list disk partitions recognized by RedBoot.

dump -b <location> [-]1 <length>] [-s]

Display (hex dump) a range of memory.

This command displays the contents of memory in hexadecimal format. It is most useful for
examining a segment of RAM or flash. If the optional -s switch is provided, then the dump
will be formatted as Motorola S-records. The X command is a synonym for dunp.

Note that this command could be detrimental if used on memory mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed

by an ASCII interpretation of the data.

RedBoot > du -b 0x100 -1

0x00000100
0x00000110
0x00000120
0x00000130
0x00000140:
0x00000150
0x00000160
0x00000170
RedBoot > d
OxFEO0BO0OO
OxFEOO0BO010:
OxFE00B020
OxFEO0B030
0OxFEO0BO040:
0OxFEOOBO50:
OxFEO0BO60
OxFEO0BO70
OxFEO0BO80

3060
0000
0000
0000
0000
0000
0000
0000

2025
746F
2064
3A20
5D0A
2043
6520
3032
456E

0004
0000
0000
0000
0000
0000
0000
0000

700A
206C
6174
2570
0000
6865
2D20
6C58
7472

6063
0000
0000
0000
0000
0000
0000
0000

-b Oxfe00b000 -1

0000
6F61
6120
205B
2A2A
636B
4164
203C
7920

RedBoot > x -b 0x3e00000 -s
S31503E00000803C04E980880000808800008088000046
S31503E00010825010188948100088400001C01A040174
S31503E00020825010188948100088400002C01A03FD68
S31503E00030825010188948100088400003C01A03F95B
S31503E00040825010188948100088400004C01A03F54E
S31503E00050825010188948100088400005C01A03F141
S31503E00060825010188948100088400006C01A03ED34
S31503E00070825010188948100088400007C01A03E927

reset

Reset the system.

0x80

2000
0000
0000
0000
0000
0000
0000
0000

0x80

0000
6420
746F
6EGF
2A20
7375
6472
3E20
706F

7C68
0000
0000
0000
0000
0000
0000
0000

4174
532D
2061
7420
5761
6D20
3A20
2530
696E

-1 0x80

18

03A6
0000
0000
0000
0000
0000
0000
0000

7465
7265
6464
696E
726E
6661
256C
326C
743A

4E80
0000
0000
0000
0000
0000
0000
0000

6D70
636F
7265
2052
696E
696C
782C
580A
2025

7420 | Y%.. ... At t enpt
7264 |to load S-record

7373 | data to address|
414D |: Y% [not in RAM
6721 |]...*** \Wrning!
7572 | Checksum fail ur
2025 |e - Addr: % x, %

0000 | 021 X <> %021 X. . . |
702C | Entry point: %p,

This command resets the platform. On many targets this is equivalent to a power-on reset, but
on others it may just cause a jump to the architecture’s reset entry resulting in a reinitialization
of the system.

version

Display RedBoot version information.

This command simply displays version information about RedBoot.

RedBoot > ver si on

RedBoot (tm) debug environnment - built 09:12:03, Feb 12 2001
Platform XYZ (PowerPC 860)

Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0x00000000- 0x00400000

RedBoot >

2.3.3 Download Process

load

The | oad command is used to download data into the target system. Data can be loaded via
a network connection, using either the TFTP protocol, or the console serial connection using
the X/Y modem protocol. Files may also be loaded directly from local filesystems on disk.
Files to be downloaded may either be executable images in ELF executable program format,
Motorola S-record (SREC) format or raw data. The format of the command is:

load {file}[-v][-d][-b | ocation][-r][-m {xnodeni|lynmodeni|[t f t p]|[di sk]}] [-h host_I P_ad-
dress]

Arguments

file

The name of the file on the TFTP server or the local disk. Details of how this is
specified for TFTP are host-specific. For local disk files, the name must be in
disk: filename format. The disk portion must match one of the disk names listed
by the disks command.

Display a small spinner (indicator) while the download is in progress. This is just
for feedback, especially during long loads. Note that the option has no effect when
using a serial download method since it would interfere with the protocol.

Decompress gzipped image during download.

Specify which I/O channel to use for download. This option is only supported when
using either xmodem or ymodem protocol.

Specify the location in memory to which the file should be loaded. Executable
images normally load at the location to which the file was linked. This option
allows the file to be loaded to a specific memory location, possibly overriding any
assumed location.

Download raw data. Normally, the load command is used to load executable images
into memory. This option allows for raw data to be loaded. If this option is given,
-b will also be required.

19

-m The -m option is used to select the download method. The choices are:

xmodem, ymodem

serial download using standard protocols over a port. If no -c option is used,
the current console port will be used, otherwise the protocol transfer will take
place on the specified channel. When using this method, the file parameter is
not required.

tftp

network based download using the TFTP protocol.
disk

load a file from local disk.

-h Used explicitly to name a host computer to contact for the download data. This
works in TFTP mode only.

RedBoot > | o redboot. ROM -b 0x8c400000
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000f e80

2.4 Flash Image System (FIS)

If the platform has flash memory, RedBoot can use this for image storage. Executable images, as
well as data, can be stored in flash in a simple file store. The f i S command is used to manipulate
and maintain flash images.

The available f i S commands are:

fis init [-f]
This command is used to initialize the flash Image System (FIS). It should only be executed
once, when RedBoot is first installed on the hardware. Subsequent executions will cause loss
of data in the flash (previously saved images will no longer be accessible).
If the - f option is specified, all blocks of flash memory will be erased as part of this process.

RedBoot> fis init -f
About to initialize [format] flash inage system - are you sure (y/n)? n

fis [-c] [-d] list
This command lists the images currently available in the FIS. Certain images used by RedBoot
have fixed names. Other images can be manipulated by the user.
If the -c option is specified, the image checksum is displayed instead of the Mem Addr field.

If the -d option is specified, the image dat al engt h is displayed instead of the length
[amount of flash used]. The dat al engt h is the length of data within the allocated flash
image actually being used for data.

RedBoot > fis |ist

Nare flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

20

RedBoot [backup] 0xA0020000
RedBoot confi g OxAOFC0000
FI'S directory OxAOFEO000
RedBoot> fis list -c

Name flash addr
RedBoot 0xA0000000
RedBoot [backup] 0xA0020000
RedBoot config OxAOFCO000
RedBoot confi g OxAOFEO000

0x8C010000
O0xAQFC0000
OxAOFEO0000

Checksum

0x34C94A57
0x00000000
0x00000000
0x00000000

0x010000
0x020000
0x020000

Lengt h

0x020000
0x010000
0x020000
0x020000

0x80010000
0x00000000
0x00000000

Entry point
0x80000000
0x8C010000
0x00000000
0x00000000

fis free

This command shows which areas of the flash memory are currently not in use. In use means
that the block contains non-erased contents. Since it is possible to force an image to be loaded
at a particular flash location, this command can be used to check whether that location is in
use by any other image.

NOTE

There is currently no cross-checking between actual flash contents and the image direc-
tory, which mans that there could be a segment of flash which is not erased that does not
correspond to a named image, or vice-versa.

RedBoot > fis free

0xA0040000 .. 0xA07C0000
0xA0840000 .. OxAOFCO000

fis create -b <mem_base> -l <length> [-f <flash_addr>] [-e <entry_point>] [-r <ram_addr>]|
[-s <data_length>] [-n] <name>

This command creates an image in the FIS directory. The data for the image must exist in
RAM memory before the copy. Typically, you would use the RedBoot | oad command to
load an image into RAM and then the fi S cr eat e command to write it to flash.

Arguments

name
-b
-1

The name of the file, as shown in the FIS directory.
The location in RAM used to obtain the image. This is a required option.

The length of the image. If the image already exists, then the length is inferred
from when the image was previously created. If specified, and the image exists, it
must match the original value.

The location in flash for the image, which will be inferred for extant images if not
specified. If this is not provided, the first freeVblock which is large enough will be
used. Seefis free.

The execution entry address. This is used if the starting address for an image is
not known, or needs to be overridden.

The location in RAM when the image is loaded via fi s | oad. This only needs to
be specified for images which will eventually loaded viaf i s | oad. Fixed images,
such as RedBoot itself, will not need this.

21

RedBoot > fis create RedBoot
An i nage naned ‘ RedBoot’

The length of the actual data to be written to flash. If not present then the image
length (-1) value is assumed. If the value given by -s is less than -1, the remainder of
the image in flash will be left in an erased state. Note that by using this option it is
possible to create a completely empty flash image, for example to reserve space for
use by applications other than RedBoot.

If -n is specified, then only the FIS directory is updated, and no data is copied
from RAM to flash. This feature can be used to recreate the FIS entry if it has
been destroyed.

-f 0xa0000000 -b 0x8c400000 -
sure (y/n)? n

0x20000
exists - are you

RedBoot > fis create junk -b 0x8c400000 -1 0x20000
Erase from 0xa0040000- 0xa0060000: .
Pr ogram from 0x8c400000- 0x8¢c420000 at 0xa0040000:

Erase from OxaOf e0000- 0xal1000000:

Program from 0x8c7d0000- 0x8c7f OOOO. at

OxaOf e0000:

If you are loading an existing file, then the fis create command will provide some values automat-
ically, such as the flash address and flash length.

fis load [-b <memory load address>] [-c] [-d] name

This command is used to transfer an image from flash memory to RAM.

Once loaded, it may be executed using the go command. If -b is specified, then the image is
copied from flash to the specified address in RAM. If -b is not specified, the image is copied
from flash to the load address given when the image was created.

Arguments

name The name of the file, as shown in the FIS directory

-b Specify the location in memory to which the file should be loaded. Executable
images normally load at the location to which the file was linked. This option
allows the file to be loaded to a specific memory location, possibly overriding any
assumed location.

-C Compute and print the checksum of the image data after it has been loaded into
memory.

-d Decompress gzipped image while copying it from flash to RAM.

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

fis delete name

This command removes an image from the FIS. The flash memory will be erased as part of
the execution of this command, as well as removal of the name from the FIS directory.

RedBoot > fis |ist

Nare flash addr Mem addr Lengt h Entry point
RedBoot 0xA0000000 0xAO0000000 0x020000 0x80000000
RedBoot [backup] 0xA0020000 0x8C010000 0x020000 0x8C010000
RedBoot config OxAOFCO000 OxAOFCO000 0x020000 0x00000000
FIS directory OxAOFEO000 OxAOFEO000 0x020000 0x00000000

22

j unk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot > fis del ete junk
Del ete image ‘junk’ - are you sure (y/n)? vy

Erase from 0xa0040000- 0xa0060000

Erase from OxaOf e0000- 0xa1000000: .

Pr ogram from 0x8c7d0000- 0x8c7f 0000 at OxaOf e0000

NOTE

Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning
if this is attempted.

fis lock -f <flash_addr> -1 <length>

This command is used to write-protect (lock) a portion of flash memory, to prevent accidental
overwriting of images. In order to make make any modifications to the flash, a matching
unlock command must be issued. This command is optional and will only be provided on
hardware which can support write-protection of the flash space.

NOTE

Depending on the system, attempting to write to write-protected flash may generate errors
or warnings, or be benignly quiet.
RedBoot > fis | ock -f 0xa0040000 -1 0x20000
Lock from 0xa0040000- 0xa0060000:

fis unlock -f <flash_addr> -1 <length>

This command is used to unlock a portion of flash memory forcibly, allowing it to be updated.
It must be issued for regions which have been locked before the FIS can reuse those portions
of flash.

RedBoot > fis unlock -f 0xa0040000 -1 0x20000
Unl ock from 0xa0040000- 0xa0060000:

fis erase -f <flash_addr> -l <length>

This command is used to erase a portion of flash memory forcibly. There is no cross-checking
to ensure that the area being erased does not correspond to a loaded image.

RedBoot > fis erase -f 0xa0040000 -1 0x20000
Erase from 0xa0040000- 0xa0060000

fis write -b <location> -l <length> -f <flash addr>

Writes data from RAM at <location> to flash.
2.5 Persistent State Flash-based Configuration and Control

RedBoot provides flash management support for storage in the flash memory of multiple executable
images and of non-volatile information such as IP addresses and other network information.

23

RedBoot on platforms that support flash based configuration information will report the following
message the first time that RedBoot is booted on the target:

flash configuration checksumerror or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by running
thef conf i g command as described below. At this point you may also wishtorunthefi s i nit
command. See other fis commands in Section 2.4.

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the con-
figuration. However, the basic operation used to maintain this information is the same. Using the
fconfig -1 command, the information may be displayed and/or changed.

If the optional flag - i is specified, then the configuration database will be reset to its default state.
This is also needed the first time RedBoot is installed on the target, or when updating to a newer
RedBoot with different configuration keys.

If the optional flag - | is specified, the configuration data is simply listed. Otherwise, each config-
uration parameter will be displayed and you are given a chance to change it. The entire value must
be typed - typing just carriage return will leave a value unchanged. Boolean values may be entered
using the first letter (t for true, f for false). At any time the editing process may be stopped simply
by entering a period (.) on the line. Entering the caret (") moves the editing back to the previous
item. See “RedBoot Editing Commands”, Section 2.2.

If any changes are made in the configuration, then the updated data will be written back to flash
after getting acknowledgement from the user.

If the optional flag - n is specified (with or without - |) then “nicknames” of the entries are used.
These are shorter and less descriptive than “full” names. The full name may also be displayed by
adding the - f flag.

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the
format

RedBoot > fconfig nickname val ue

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied,
then the entry will be set to that value. You will be prompted whether to write the new information
into flash if any change was made. For example

RedBoot > fconfig -1 -n

boot _script: false

boot p: fal se

bootp_ny_ip: 10.16.19.176

boot p_server _i p: 10.16. 19. 66

dns_ip: 10.16.19.1

gdb_port: 9000

net _debug: fal se

RedBoot > fconfig bootp_nmy_ip 10.16.19.177

boot p_ny_ip: 10.16.19.176 Setting to 10.16.19. 177

Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Unl ock from 0x507c0000- 0x507e0000:
Erase from 0x507c0000- 0x507e0000: .
Program from 0x0000a8d0- 0x0000acd0 at 0x507c0000
Lock from 0x507c0000- 0x507e0000:

24

RedBoot >

Additionally, nicknames can be used like aliases via the format % {nickname}. This allows the
values stored by f conf i g to be used directly by scripts and commands.

Depending on how your terminal program is connected and its capabilities, you might find that
you are unable to use line-editing to delete the ‘old’ value when using the default behaviour of
fconfi g ni cknane orjust plain f confi g, as shown in this example:

RedBoot > fco bootp
boot p: fal se_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot > fco bootp

boot p: true

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
Unl ock from. ..

RedBoot > _

To edit when you cannot backspace, use the optional flag - d (for “dumb terminal”) to provide a
simpler interface thus:

RedBoot > fco -d bootp
bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot > fco -d bootp

boot p: false ? true

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy
Unl ock from. ..

RedBoot > _

One item which is always present in the configuration data is the ability to execute a script at boot
time. A sequence of RedBoot commands can be entered which will be executed when the system
starts up. Optionally, a time-out period can be provided which allows the user to abort the startup
script and proceed with normal command processing from the console.

RedBoot > fconfig -I

Run script at boot: false

Use BOOTP for network configuration: false
Local I P address: 192.168.1.29

Default server |P address: 192.168.1.101
DNS server |P address: 192.168.1.1

GDB connection port: 9000

Net wor k debug at boot tine: false

The following example sets a boot script and then shows it running.

RedBoot > fconfig
Run script at boot: false t
Boot script:
Enter script, terminate with enpty line
>> fi |i
Boot script tineout: 0 10
Use BOOTP for network configuration: false .
Updat e RedBoot non-vol atile configuration - are you sure (y/n)? vy
Erase from OxaOf c0000- OxaOf e0000: .
... Program from 0x8c021f 60- 0x8c022360 at 0OxaOf c0000:
RedBoot >
RedBoot (tm) debug environnment - built 08:22:24, Aug 23 2000

25

Copyright (C 2000, Red Hat, Inc.

RAM 0x8c000000- 0x8c800000

flash: 0xa0000000 - 0xal000000, 128 bl ocks of 0x00020000 bytes ea.
Socket Conmuni cations, Inc: Low Power Ethernet CF Revision C\

5V/ 3.3V 08/27/98 I P: 192.168.1.29, Default server: 192.168.1.101 \
== Executing boot script in 10 seconds - enter "C to abort

RedBoot > fi i
Nare flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000

RedBoot [backup] 0xA0020000 0x8C010000 0x020000 0x8C010000
RedBoot config 0OxAOQFC0000 OxAOFCO000 0x020000 0x00000000
FIS directory OxAOFEO0000 OxAOFEO000 0x020000 0x00000000
RedBoot >

NOTE

The bold characters above indicate where something was entered on the console. As you can
see,thefi | i command at the end came from the script, not the console. Once the script is
executed, command processing reverts to the console.

NOTE

RedBoot supports the notion of a boot script timeout, 1.e. a period of time that RedBoot waits
before executing the boot time script. This period is primarily to allow the possibility of can-
celling the script. Since a timeout value of zero (0) seconds would never allow the script to
be aborted or cancelled, this value is not allowed. If the timeout value is zero, then RedBoot
will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run
from RAM. Other configurations are also possible. All RedBoot configurations will execute the
boot script, but in certain cases it may be desirable to limit the execution of certain script commands
to one RedBoot configuration or the other. This can be accomplished by prepending { <st ar t up
t ype>} to the commands which should be executed only by the RedBoot configured for the spec-
ified startup type. The following boot script illustrates this concept by having the ROM based
RedBoot load and run the RAM based RedBoot. The RAM based RedBoot will then list flash im-
ages.

RedBoot > fco

Run script at boot: false t

Boot script:

Enter script, terminate with enpty line

>> {ROMfis | oad RedBoot [backup]

>> {ROM go

>> {RAMfis i

>>

Boot script tineout (1000ns resolution): 2
Use BOOTP for network configuration: false

Updat e RedBoot non-volatile configuration - are you sure (y/n)? vy

Unl ock from 0x007c0000- 0x007e0000:
Erase from 0x007c0000- 0x007e0000:

26

Pr ogram from 0xa0015030- 0xa0016030 at 0x007df 000:
Lock from 0x007c0000- 0x007e0000:

RedBoot > reset

... Resetting.

+Et hernet et hO: MAC address 00: 80: 4d: 46: 01: 05

I P: 192.168.1.153, Default server: 192.168.1.10

[ROM
built 17:37:36, Aug 14 2001

RedBoot (tm bootstrap and debug environnent
Red Hat certified release, version RL. xx -

Pl at f orm
Copyri ght

1 @B0310 (XScal €)

(© 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa001b088-0xalf df 000 avail abl e

FLASH: 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
Executing boot script in 2.000 seconds - enter "C to abort
RedBoot > fis | oad RedBoot [backup]

RedBoot > go

+Et hernet et h0O: MAC address 00: 80: 4d: 46: 01: 05

| P: 192.168.1.153, Default server: 192.168.1.10

RedBoot (tm bootstrap and debug environnent
Red Hat certified rel ease, version Rl.xx -

[RAM
bui It 13:03:47, Aug 14 2001

Platform |@0310 (XScal e)
Copyright (C 2000, 2001, Red Hat, Inc.

RAM 0xa0000000- 0xa2000000, 0xa0057f e8- Oxalf df 000 avail abl e

FLASH. 0x00000000 - 0x00800000, 64 bl ocks of 0x00020000 bytes each.
Executing boot script in 2.000 seconds - enter "C to abort
RedBoot> fis |i

Narre FLASH addr Mem addr Lengt h Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot [backup] 0x00040000 0xA0020000 0x00040000 0xA0020040
RedBoot config 0x007DF000 0x007DFO00 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000

RedBoot >

2.6 Executing Programs from RedBoot

Once an image has been loaded into memory, either via the | oad command or the fi s | oad
command, execution may be transfered to that image.

NOTE

The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to
it. Typical examples would be an eCos application or a Linux kernel.

go - Execute a program
The format of the go command is:
[-c] [-n]

RedBoot > go [-w tine] [l ocation]

27

Execution will begin at | ocat i on if specified. Otherwise, the entry point of the last image
loaded will be used.

The - woption gives the user t i me seconds before execution begins. The execution may be
aborted by typing Ctrl+C on the console. This mode would typically be used in startup scripts.

The - C option is used to allow execution with caches enabled. Normally, the g0 command
will disable caches before execution.

The - n option is only available when RedBoot supports a network device. It causes the net-
work interface to be disabled before execution begins.

exec - Execute a Linux kernel image

% NOTE

This command is not available for all platforms. Its availability is indicated in specific
platform information in Chapter 5.

Arguments

-w tineout]

-b <load addr> [-] <l ength]]

<randi sk addr>

<randi sk | engt h>]]

"kernel conmand |ine"] [<entry_point>]

— — — — —
'

1 1
o wn =

This command is used to execute a non-eCos application, typically a Linux kernel. Additional
information may be passed to the kernel at startup time. This command is quite special (and
unique from the go’ command) in that the program being executed may expect certain envi-
ronmental setups, for example that the MMU is turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location (0xC0008000
in the case of the SA1110). Since this memory is used by RedBoot internally, it is not possible
to load the kernel to that location directly. Thus the requirement for the "-b" option which tells
the command where the kernel has been loaded. When the exec command runs, the image will

be relocated to the appropriate location before being started. The "-r" and "-s" options are used
to pass information to the kernel about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the
command line data contains any puncuation (spaces, etc), then it must be quoted using the
double-quote character °"’. If the quote character is required, it should be written as *\"’.

28

3 Rebuilding RedBoot

3.1 Introduction

In normal circumstances it is only necessary to rebuild RedBoot if it has been modified, for exam-
ple if you have extended the command set or applied patches. See the Getting Started with eCos
document, which provides information about the portability and extendability of RedBoot in an
eCos environment.

Most platform HALSs provide configuration export files. Before proceding with the following pro-
cedures, check “Configuration export files”, Section 3.1.1 first, which may simplify the process for
your platform.

RedBoot is configured and built using configuration technology based on Configuration Descrip-
tion Language (CDL). The detailed instructions for building the command-line tool ecosconf i g
on Linux can be found in host'README. For example:

nkdi r $TEMP/ r edboot - bui | d

cd $TEMP/ r edboot - bui | d

$ECOSDI R/ host/ configure --prefix=$TEMP/ redboot-build --w th-tcl=/usr
make

The simplest version of RedBoot can be built by setting the environment variable ECOS_REPOS-
ITORY to point at the eCos/RedBoot source tree, and then typing:
ecosconfig new TARGET redboot

ecosconfig tree
make

where TARGET is the eCos name for the desired platform, for example assabet. You will need to
have set the environment variable ECOS_REPOSITORY to point at the eCos/RedBoot source tree.
Values of TARGET for each board are given in the specific installation details for each board in
Chapter 5, Installation and Testing.

The above command sequence would build a very simple version of RedBoot, and would not in-
clude, for example, networking, FLASH or Compact Flash Ethernet support on targets that sup-
ported those. Such features could be included with the following commands:

ecosconfig new TARGET redboot

ecosconfig add fl ash

ecosconfig add pcntia net_drivers cf_eth_drivers

ecosconfig tree
make

In practice, most platform HALs include configuration export files, described in Section 3.1.1, to
ensure that the correct configuration of RedBoot has been chosen to avoid needing to worry about
which extra packages to add.

The above commands would build a version of RedBoot suitable for testing. In particular, the
result will run from RAM. Since RedBoot normally needs to be installed in ROM/flash, type the
following:

cat >RedBoot ROM ecm <<EOF

cdl _conponent CYG HAL_STARTUP {
user _val ue ROM

29

1

ECF

ecosconfig i mport RedBoot ROM ecm
ecosconfig tree

nmeke

This set of commands will adjust the configuration to be ROM oriented.

Each of these command sequences creates multiple versions of RedBoot in different file formats.
The choice of which file to use will depend upon the actual target hardware and the tools available
for programming ROM/flash. The files produced (typically) are:

install/bin/redboot. el f This isthe complete version of RedBoot, represented in ELF
format. It is most useful for testing with tools such as embedded ICE, or other debug tools.

i nstall/bin/redboot. srec This version has been converted to Motorola S-record format.

i nstall/bin/redboot. bi n This version has been flattened; that is, all formatting informa-
tion removed and just the raw image which needs to be placed in ROM/flash remains.

The details of putting the RedBoot code into ROM/flash are target specific. Once complete, the
system should come up with the RedBoot prompt. For example, the version built using the com-
mands above looks like:

RedBoot (tm) debug environnent [ROM

Red Hat certified release, version RlL.xx - built 07:54:25, Cct 16 2000

Pl atform Assabet devel opnent system (StrongARM 1110)

Copyright (C) 2000, Red Hat, Inc.

RAM 0x00000000- 0x02000000

flash: 0x50000000 - 0x50400000, 32 bl ocks of 0x00020000 bytes ea.

Socket Communi cations, Inc: Low Power Ethernet CF Revision C

5V/ 3.3V 08/ 27/ 98

IP. 192.168.1.29, Default server: 192.168.1.101
RedBoot >

3.1.1 Configuration export files

To help with rebuilding RedBoot from source, some platforms HALs provide configuration export
files. First locate the configuration export files for your platform in the eCos source repository. The
RAM and ROM startup configuration exports can usually be found in a directory named "misc" in
the platform HAL in the eCos source repository, named:

1432 Feb 1 13:27 misc/redboot RAM ecm
1487 Feb 1 14:38 nisc/redboot ROM ecm

All dates and sizes are just examples.

3.1.1.1 Making RedBoot for RAM startup
Throughout the following instructions, several environmental variables are referred to:
$REDBOOTDIR

Full path to the toplevel RedBoot source release.
$BUILDDIR

Full path to where RedBoot will be built, e.g. r edboot . RAM

30

$ECOS_REPOSITORY

Full path to the RedBoot package source. Typically, this should be $REDBOOTDIR/ packages.
$TARGET

e.g.atlas mips32 4kc.
$ARCH_DIR

The directory for the architecture, e.g. mips.
$PLATFORM_DIR

The directory for the platform, e.g. atlas.
$VERSION

The version of the release, e.g. current.

You must make sure these variables are correctly set in your environment before proceeding, or the
build will fail. The values for $TARGET, $ARCH_DIR and $PLATFORM_DIR for each board are given in
the specific installation details for each board in Chapter 5, Installation and Testing. The value for
$VERSION is the name of the package subdirectories - usually ’current’ for sources checked out of
CVS, or something like vX Y’ for a regular X.Y release.

With the environment variables set, use the following sequence of commands to build a RedBoot
image suitable for loading into RAM:
nmkdi r $BUI LDDI R
cd $BU LDDI R
ecosconfi g new $TARCET redboot
ecosconfig inmport \
${ ECOS_REPCS| TORY}/ hal / ${ ARCH DI R}/ ${ PLATFORM DI R}/ ${ VERSI ON} / i sc/ r edboot _RAM ecm

ecosconfig tree
nmeke

To build a ROM or ROMRAM version, in a different build/config directory, just use the configu-
ration export file r edboot _ROM ecmor r edboot _ ROVRAM ecminstead.

The resulting files will be, in each of the ROM, ROMRAM and RAM startup build places:

$BUI LDDI R/ i nstal | / bi n/ redboot . bin
$BUI LDDI R/ i nstal | / bi n/redboot . el f
$BUI LDDI R/ i nst al | / bi n/ redboot . i ng
$BUI LDDI R/i nst al | / bi n/ redboot . srec

Some targets may have variations, or extra files generated in addition.

3.1.2 Platform specific instructions

The platform specific information in Chapter 5, Installation and Testing should be consulted, as
there may be other special instructions required to build RedBoot for particular boards.

31

4 Updating RedBoot

4.1 Introduction

RedBoot normally runs from flash or ROM (in both cases, it is termed a ROM-startup configuration
of RedBoot). In the case of flash, it is possible to update RedBoot, that is, replace it with a newer
version, in situ. This process is complicated by the fact that RedBoot is running from the very flash
which is being updated. The following is an outline of the steps needed for updating RedBoot:

» Start RedBoot, running from flash.

* Load and start a different version of RedBoot, running from RAM.

» Update the primary RedBoot flash image.

» Reboot; run RedBoot from flash.

In order to execute this process, two versions of RedBoot are required; one which runs from flash,
and a separate one which runs solely from RAM. Both of these images are typically provided as part

of the RedBoot package, but they may also be rebuilt from source using the instructions provided
for the platform.

On some platforms, RedBoot runs in a ROMRAM-startup configuration: RedBoot is stored in the
flash or ROM, but when the board is reset, it is copied to RAM and executes from there. For these
platforms where RedBoot is in flash, the update in-situ process is simplified since the ROMRAM-
startup configuration of RedBoot can update the flash content. The update procedure becomes:

+ Start ROMRAM RedBoot, running from RAM.

» Update the primary RedBoot flash image.

* Reboot; run the new ROMRAM RedBoot from ram.

In order to execute this process, only one version of RedBoot is required; a ROMRAM-startup

configuration. This image is typically provided as part of the RedBoot package, but it may also be
rebuilt from source using the instructions provided for the platform.

The following is a more detailed look at these steps. For this process, it is assumed that the target
is connected to a host system and that there is some sort of serial connection used for the RedBoot
CLI. For platforms with a ROMRAM-startup configuration of RedBoot, skip to Section 4.1.3.

4.1.1 Start RedBoot, Running from flash

To start RedBoot, reset the platform.

4.1.2 Load and start a different version of RedBoot, running from
RAM

There are a number of choices here. The basic case is where the RAM based version has been
stored in the FIS (flash Image System). To load and execute this version, use the commands:

RedBoot > fis | oad RedBoot [backup]
RedBoot > go

32

If this image is not available, or does not work, then an alternate RAM based image must be loaded.
Using the load command:

RedBoot > | oad redboot RAM srec
RedBoot > go

NOTE

The details of how to load are installation specific. The file must be placed somewhere the host
computer can provide it to the target RedBoot system. Either TFTP (shown) or X/Ymodem
can be used to download the image into RAM.

Once the image is loaded into RAM, it may be used to update the secondary RedBoot image in
flash using the FIS commands. Some platforms support locking (write protecting) certain regions
of the flash, while others do not. If your platform does not support the lock/unlock commands,
simply ignore these steps. Again, the details of these commands (in particular the numeric values)
differ on each target platform, but the ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot[backup] -f <flash addr> -b <flash source>
-r <inmage addr> -1 <flash | ength>

RedBoot > fis lock -f <flash addr> -1 <flash | ength>

4.1.3 Update the primary RedBoot flash image

At this point, a version of RedBoot is running on the target, in RAM.
Using the | oad command, download the new flash based version from the host.

Since the flash version is designed to load and run from flash, the image must be relocated into
some suitable, available, RAM location. The details of this are target platform specific (found in
the target appendix), but the command will look something like this:

RedBoot > | oad redboot ROM srec -b <flash source>

This command loads the flash image into RAM at f | ash_sour ce, using the TFTP protocol via
a network connection. Other options are available, refer to the command section on | oad for more
details.

Once the image is loaded into RAM, it must be placed into flash using the FIS commands. Some
platforms support locking (write protecting) certain regions of the flash, while others do not. If
your platform does not support the lock/unlock commands, simply ignore these steps. Again, the
details of these commands (in particular the numeric values) differ on each target platform, but the
ideas are the same:

RedBoot > fis unlock -f <flash addr> -1 <flash | ength>

RedBoot > fis create RedBoot -f <flash addr> -b <flash source> -1 <flash |ength>
-s <data | engt h>

RedBoot > fis lock -f <flash addr> -I <flash addr>

33

A NLLTN

NOTE

RedBoot will display a number of lines of information as it executes these commands. Also,
the size (-s) value for the create operation should be determined from the output provided as
part of the file download step.

It is not required, but it does allow for improved image validity checking in the form of an
image checksum.

% NOTE

After the flash image directory has been initialized with the f i S i ni t command it is possi-
ble to use a shorthand version of the fi S cr eat e command since it can get the necessary
information from the flash image directory:

RedBoot > fis create RedBoot -b <flash source>

4.1.4 Reboot; run RedBoot from flash

Once the image has been successfully written into the flash, simply reboot the target and the new
version of RedBoot will be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different con-
figuration keys, it is necessary to update the configuration directory in the flash using the f conf i g
-1 command.

% NOTE

There may be times when RedBoot does not exist on the hardware, thus making step 1 im-
possible to do. In these cases, it should be possible to get to step 2 by using GDB. If this is
possible, the appropriate steps are provided with the target documentation.

34

5 Installation and Testing
5.1 Intel Xscale IXDP465 Evaluation Board

5.1.1 Overview

RedBoot supports the builtin high-speed and console UARTs, a single PCI based 182559 ether-
net card (182559 eth0), and all three NPE ethernet ports (npe_eth0O, npe ethl, and npe_eth2) for
communication and downloads. The default serial port settings are 115200,8,N,1. RedBoot also
supports flash management for the 32MiB boot flash on the mainboard.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash boot sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

ROMRAM [ROMRAM] RedBoot booting from | redboot ROM-
flash, running from RAM.ecm
RAM.

5.1.2 Initial Installation Method

The IXDP465 flash is not socketed, so initial installation must be done using an appropriate JTAG
based solution. The ROM or ROMRAM mode RedBoot is programmed into the boot flash at ad-
dress 0x00000000.

AL NLLTN

NOTE

Make sure that jumpers on the CPU card connect the EEPROM I12C lines to the IXP based,
not GPIO based 12C bus lines. Also, make sure that baseboard is jumpered to enable writes
to the EEPROM.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.1.3 LED Codes

RedBoot uses the LCD display to indicate status during board initialization. Possible codes are:

35

LED Actions

Power-On/Reset
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup expansion bus chip selects
Setup LCD
1001
Enable Icache
1002
Initialize SDRAM controller
1003
Switch flash (CS0) from 0x00000000 to 0x50000000
1004
Fill SDRAM with zero to initialize ECC codes
1005
[ROMRAM only] Copy RedBoot to SDRAM and execute from there
1006
Build MMU table in SDRAM
1007
Setup TTB to point to page table
1008
Turn on MMU
1009
Enable DCache
100A
Enable branch target buffer
100B
Drain write and fill buffer
Flush caches
100C
Enable ECC support
100D
Start up the eCos kernel or RedBoot
0001

5.1.4 Special RedBoot Commands

The set _npe_mac command allows the printing and setting of the ethernet MAC address of the
three NPE ports. To print the current MAC addresses of all ethernet ports:

RedBoot > set _npe_nac

NPE et hO mac: 00: 02: b3: 3c: 15: ab

NPE et hl mac: 00: 02: b3: 3c: 16: 46
NPE et h2 mac: 00:02: b3: 3c: 16: 48

36

To set the mac address for NPE ethl (NPEC), use something like:
RedBoot > set _npe_mac -p 1 00: 02: b3: 3c: 16: 46

but with the desired mac address.

5.1.5 Rebuilding RedBoot
These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=i xdp465

export ARCH DI R=arm

export PLATFORM DI R=xscal e/ i xdp465
Optionally,

export TARGET=i xdp465_npe
could be used to include NPE ethernet support.

The names of configuration files are listed above with the description of the associated modes.

5.1.6 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::
int irg_handl er(unsigned vector, unsigned data)

On the IXDP465 board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ i xp425/ current/include/ hal _var_ints. h::

#def i ne CYGNUM HAL_| NTERRUPT NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#defi ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#def i ne CYGNUM_HAL_| NTERRUPT_QWR 4
#def i ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#defi ne CYGNUM HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _I NT 8
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMVA2 10
#defi ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_I NTERRUPT_USB 12
#defi ne CYGNUM HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM_HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#def i ne CYGNUM HAL_I NTERRUPT_GPI C8 20
#def i ne CYGNUM HAL_| NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM _HAL_I NTERRUPT_GPI O7 24
#def i ne CYGNUM_HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPl 09 26

37

#defi ne CYGNUM HAL_| NTERRUPT_GPI OL0 27

#defi ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31
#def i ne CYGNUM HAL_| NTERRUPT_USB_HOST 32
#def i ne CYGNUM HAL_I NTERRUPT | 2C 33
#def i ne CYGNUM HAL_| NTERRUPT_SPI 34
#defi ne CYGNUM HAL_| NTERRUPT_TI MESYNC 35
#defi ne CYGNUM HAL_| NTERRUPT_EAU_DONE 36
#defi ne CYGNUM HAL_| NTERRUPT_SHA_DONE 37

#define CYGNUM HAL_| NTERRUPT_SWCP_PERR 58
#define CYGNUM HAL_| NTERRUPT_QMGR PERR 60
#define CYGNUM HAL_| NTERRUPT_MCU_ERR 61
#define CYGNUM HAL_| NTERRUPT EXP_PERR 62

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 64 interrupts, the data table starts at address 0x8104.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

5.1.7 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

X C B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate

0 11 Cached/Buffered Wite Back, Read Allocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/Wite Allocate

Vi rtual Address Physi cal Address XCB Size (M B) Description
0x00000000 0x00000000 010 128 SDRAM (cached)
0x20000000 0x00000000 000 128 SDRAM (‘uncached)
0x30000000 0x00000000 010 128 SDRAM (cached data coherent)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 Csl - Csv
0x60000000 0x60000000 000 64 Queue Manager
0xA0000000 0x50000000 010 16 Fl ash (CSO, data coherent)
0xC0000000 0xC0000000 000 1 PCl Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 M sc | XP4xx 10
0xCC000000 0xCC000000 000 1 SDRAM Confi g

38

5.1.8 Platform Resource Usage

The IXP4xx programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

5.2 Intel(r) Next Generation of Network Processors (Code
Name Hamoa) Reference Platform

5.2.1 Overview

RedBoot supports the builtin high-speed UART, a single PCI based E100 (182559 eth0), a single
PCI based E1000 ethernet card (e1000_eth0), and both NPE ethernet ports (npe wan and npe lan)
for communication and downloads. The default serial port settings are 115200,8,N,1. RedBoot
also supports flash management for the 16MiB boot flash on the board.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash boot sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

ROMRAM [ROMRAM] RedBoot booting from | redboot ROM-
flash, running from RAM.ecm
RAM.

5.2.2 Initial Installation Method

The onboard flash is not socketed, so initial installation must be done using an appropriate JTAG
based solution. The ROM or ROMRAM mode RedBoot images are programmed into the boot
flash at offset 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

39

5.2.3 LED Codes

RedBoot uses 8 discrete LEDs to indicate an 8 bit status code during board initialization. The LEDs
are arranged as two rows of four LEDs. The top row of LEDs are the most significant 4 bits of the
status code and the bottom row are the least significant 4 bits. Possible codes are:

LED Actions

Power-On/Reset
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup expansion bus chip selects

F1

Enable Icache
F2

Initialize SDRAM controller
F3

Initialize hardware registers.
F4

Switch flash (CS0) from 0x00000000 to 0x50000000
F5

[ROMRAM only] Copy RedBoot to SDRAM and execute from there
F6

Build MMU table in SDRAM
F7

Setup TTB to point to page table
F8

Turn on MMU
F9

Enable DCache
FA

Enable branch target buffer
FB

Drain write and fill buffer
Flush caches
FC
Set up low level vectors.
03
initialize PCI bus.
01
Start RedBoot command shell.

40

5.2.4 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=ki xr p435
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ ki xr p435

Optionally,
export TARGET=ki xr p435_npe
could be used to include NPE ethernet support.

The names of configuration files are listed above with the description of the associated modes.

5.2.5 Interrupts
RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::
int irg_handl er(unsigned vector, unsigned data)
On the Intel(r) Next Generation of Network Processors (Code Name Hamoa) Reference Platform,

the vector argument is one of many interrupts defined in hal / ar m xscal e/ i xp425/ cur -
rent/include/ hal var ints. h::

#def i ne CYGNUM HAL_| NTERRUPT _NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#defi ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#def i ne CYGNUM_HAL_| NTERRUPT_QWR 4
#def i ne CYGNUM HAL_I NTERRUPT_TI MERO 5
#def i ne CYGNUM HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _I NT 8
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DMVA2 10
#defi ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_I NTERRUPT_USB 12
#defi ne CYGNUM HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM_HAL_| NTERRUPT_WDOG 16
#def i ne CYGNUM HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 20
#def i ne CYGNUM HAL_| NTERRUPT_GPl O4 21
#defi ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_I NTERRUPT_GPI O7 24
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#defi ne CYGNUM HAL_| NTERRUPT_GPI 010 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL1 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT1 30

41

#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

#def i ne CYGNUM HAL_| NTERRUPT_USB_HOST 32
#def i ne CYGNUM HAL_I NTERRUPT | 2C 33
#def i ne CYGNUM HAL_| NTERRUPT_SPI 34
#defi ne CYGNUM HAL_| NTERRUPT_TI MESYNC 35
#defi ne CYGNUM HAL_| NTERRUPT_EAU_DONE 36
#def i ne CYGNUM HAL_| NTERRUPT_SHA_DONE 37

#define CYGNUM HAL_| NTERRUPT_SWCP_PERR 58
#define CYGNUM HAL_| NTERRUPT_QMGR PERR 60
#define CYGNUM HAL_| NTERRUPT_MCU_ERR 61
#define CYGNUM HAL_| NTERRUPT EXP_PERR 62

The data passed to the ISR is pulled from a data table (hal _i nt err upt _dat a) which imme-
diately follows the interrupt vector table. With 64 interrupts, the data table starts at address 0x8104.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR is ignored by RedBoot.

5.2.6 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

x
@]

B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate

011 Cached/Buffered Wite Back, Read All ocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/ Wite All ocate

Vi rtual Address Physi cal Address XCB Size (MB) Description
0x00000000 0x00000000 010 128 SDRAM (cached)
0x20000000 0x00000000 000 128 SDRAM (uncached)
0x30000000 0x00000000 010 128 SDRAM (cached data coherent)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 Csl - C+4
0x60000000 0x60000000 000 64 Queue Manager
0xA0000000 0x50000000 010 16 Fl ash (CSO, data coherent)
0xC0000000 0xC0000000 000 1 PCl Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 M sc | XP4xx 10O
0xCC000000 0xCC000000 000 1 SDRAM Confi g

42

5.2.7 Platform Resource Usage

The IXP4xx programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

43

5.3 Intel Xscale IXDP425 Network Processor Evaluation Board

5.3.1 Overview

RedBoot supports the builtin high-speed and console UARTSs, a PCI based 182559 ethernet card
(182559 _eth0), and the NPE ethernet ports (npe_eth0O and npe_eth1) for communication and down-
loads. The default serial port settings are 115200,8,N,1. RedBoot also supports flash management
for the 16MiB boot flash on the mainboard.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash boot sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.3.2 Initial Installation Method

The IXDP425 flash is socketed, so initial installation may be done using an appropriate device
programmer. JTAG based initial may also be used. In either case, the ROM mode RedBoot is
programmed into the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.3.3 LED Codes

RedBoot uses the 4 digit LED display to indicate status during board initialization. Possible codes
are:

LED Actions

Power-On/Reset
Set the CPSR
Enable coprocessor access
Drain write and fill buffer
Setup expansion bus chip selects
1001
Enable Icache
1002
Initialize SDRAM controller

44

1003

Switch flash (CS0) from 0x00000000 to 0x50000000
1004

Copy MMU table to RAM
1005

Setup TTB and domain permissions
1006

Enable MMU
1007

Enable DCache
1008

Enable branch target buffer
1009

Drain write and fill buffer

Flush caches
100A

Start up the eCos kernel or RedBoot
0001

5.3.4 Special RedBoot Commands

The set _npe_nmac command allows the printing and setting of the ethernet MAC address of the
two NPE ports. To print the current MAC addresses of both ports:

RedBoot > set _npe_nac
NPE et hO nac: 00: 02: b3: 3c: 15: ab
NPE et hl nac: 00: 02: b3: 3c: 16: 46
To set the mac address for NPE ethl (NPEC), use something like:
RedBoot > set _npe_nmac -p 1 00:02: b3: 3c: 16: 46

but with the desired mac address.

5.3.5 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=i xdp425
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ i xdp425

Optionally,
export TARGET=i xdp425_npe

could be used to include NPE ethernet support.

The names of configuration files are listed above with the description of the associated modes.

45

5.3.6 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irqg_handl er(unsigned vector, unsigned data)

On the IXDP425 board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ bul verde/ current/include/ hal _var _ints. h::

#def i ne CYGNUM HAL_| NTERRUPT _NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#defi ne CYGNUM HAL_| NTERRUPT_QW2 4
#def i ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM_HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#def i ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_| NTERRUPT_USB 12
#def i ne CYGNUM_HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM_HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#defi ne CYGNUM HAL_| NTERRUPT_GPI 08 20
#def i ne CYGNUM HAL_I NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#defi ne CYGNUM HAL_| NTERRUPT_GPI 010 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#def i ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

5.3.7 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

46

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

X C B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate

011 Cached/Buffered Wite Back, Read All ocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/ Wite All ocate

Vi rtual Address Physi cal Address XCB Size (M B) Description
0x00000000 0x00000000 010 256 SDRAM (cached)
0x10000000 0x10000000 010 256 SDRAM (al i as)
0x20000000 0x00000000 000 256 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 CS1l - Cs7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PClI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 M sc | XP425 1O
0xCC000000 0xCC000000 000 1 SDRAM Confi g

5.3.8 Platform Resource Usage

The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

47

5.4 Intel Xscale Generic Residential Gateway

5.4.1 Overview

RedBoot supports the console UART, a PCI based 182559 ethernet card (182559 eth0), and both
NPE ethernet ports (npe_ethO and npe _eth1) for communication and downloads. The default serial

port settings are 115200,8,N,1. RedBoot also supports flash management for the 16MiB onboard
flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash boot sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.4.2 Initial Installation Method

The GRG flash is socketed, so initial installation may be done using an appropriate device program-
mer. JTAG based flash programming may also be used. In either case, the ROM mode RedBoot is
programmed into the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.4.3 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=grg
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ grg

Optionally,
export TARGET=grg_npe

could be used to include NPE ethernet support.

The names of configuration files are listed above with the description of the associated modes.

48

5.4.4 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irqg_handl er(unsigned vector, unsigned data)

On the GRG board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ bul verde/ current/include/ hal _var _ints. h::

#def i ne CYGNUM HAL_| NTERRUPT _NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#defi ne CYGNUM HAL_| NTERRUPT_QW2 4
#def i ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM_HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#def i ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_| NTERRUPT_USB 12
#def i ne CYGNUM_HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM_HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#defi ne CYGNUM HAL_| NTERRUPT_GPI 08 20
#def i ne CYGNUM HAL_I NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#defi ne CYGNUM HAL_| NTERRUPT_GPI 010 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#def i ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

5.4.5 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

49

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

X C B Description

0 0 0 Uncached/ Unbuffered

0 0 1 Uncached/Buffered

0 1 0 Cached/Buffered Wite Through, Read Allocate

011 Cached/Buffered Wite Back, Read All ocate

100 Invalid -- not used

1 01 Uncached/Buffered No wite buffer coal escing

110 Mni DCache - Policy set by Aux Ctl Register

111 Cached/Buffered Wite Back, Read/ Wite All ocate

Vi rtual Address Physi cal Address XCB Size (M B) Description
0x00000000 0x00000000 010 32 SDRAM (cached)
0x10000000 0x00000000 010 32 SDRAM (al i as)
0x20000000 0x00000000 000 32 SDRAM (uncached)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 CS1l - Cs7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PClI Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Msc CPU IO
0xCC000000 0xCC000000 000 1 SDRAM Confi g

5.4.6 Platform Resource Usage

The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

50

5.5 Intel IXDPG425 Network Gateway Reference Platform

5.5.1 Overview

RedBoot supports the high-speed UART and NPE ethernet ports (npe_ethO and npe_eth1) for com-
munication and downloads. The default serial port settings are 115200,8,N,1. RedBoot also sup-
ports flash management for the 16MiB onboard flash.

The following RedBoot configurations are supported:

Configuration Mode Description File

ROM [ROM] RedBoot running redboot ROM.ecm
from flash boot sector.

RAM [RAM] RedBoot running from | redboot RAM.ecm
RAM with RedBoot in
the flash boot sector.

5.5.2 Initial Installation Method

The IXDPG425 flash is socketed, so initial installation may be done using an appropriate device
programmer. JTAG based flash programming may also be used. In either case, the ROM mode
RedBoot is programmed into the boot flash at address 0x00000000.

After booting the initial installation of RedBoot, this warning may be printed:

flash configuration checksumerror or invalid key

This is normal, and indicates that the flash should be configured for use by RedBoot. Even if this
message is not seen, it is recommended that the f conf i g be run to initialize the flash configuration
area. See Section 2.5 for more details.

5.5.3 Rebuilding RedBoot

These shell variables provide the platform-specific information needed for building RedBoot ac-
cording to the procedure described in Chapter 3, Rebuilding RedBoot:

export TARGET=i xdpg425
export ARCH DI R=arm
export PLATFORM DI R=xscal e/ i xdpg425

Optionally,
export TARGET=i xdpg425_npe

could be used to include NPE ethernet support.

The names of configuration files are listed above with the description of the associated modes.

51

5.5.4 Interrupts

RedBoot uses an interrupt vector table which is located at address 0x8004. Entries in this table are
pointers to functions with this protoype::

int irqg_handl er(unsigned vector, unsigned data)

On the IXDPG425 board, the vector argument is one of many interrupts defined in hal / ar n1 xs-
cal e/ i xp425/ current/include/ hal _var_ints. h::

#def i ne CYGNUM HAL_| NTERRUPT _NPEA 0
#def i ne CYGNUM HAL_| NTERRUPT_NPEB 1
#def i ne CYGNUM HAL_| NTERRUPT_NPEC 2
#def i ne CYGNUM HAL_| NTERRUPT_QWL 3
#defi ne CYGNUM HAL_| NTERRUPT_QW2 4
#def i ne CYGNUM HAL_| NTERRUPT_TI MERO 5
#def i ne CYGNUM_HAL_| NTERRUPT_GPI CD 6
#def i ne CYGNUM HAL_| NTERRUPT_GPI OL 7
#def i ne CYGNUM HAL_| NTERRUPT_PCl _|I NT 8
#def i ne CYGNUM HAL_| NTERRUPT_PCl _DMAL 9
#defi ne CYGNUM HAL_| NTERRUPT_PCl _DVA2 10
#def i ne CYGNUM HAL_| NTERRUPT_TI MERL 11
#def i ne CYGNUM HAL_| NTERRUPT_USB 12
#def i ne CYGNUM_HAL_| NTERRUPT_UART2 13
#defi ne CYGNUM HAL_| NTERRUPT_TI MESTAMP 14
#def i ne CYGNUM HAL_| NTERRUPT_UART1 15
#def i ne CYGNUM HAL_| NTERRUPT_W\DOG 16
#def i ne CYGNUM_HAL_| NTERRUPT_AHB_PMJ 17
#defi ne CYGNUM HAL_| NTERRUPT_XSCALE PMJ 18
#def i ne CYGNUM HAL_| NTERRUPT_GPI C2 19
#defi ne CYGNUM HAL_| NTERRUPT_GPI 08 20
#def i ne CYGNUM HAL_I NTERRUPT_GPl O4 21
#def i ne CYGNUM HAL_| NTERRUPT_GPI C6 22
#def i ne CYGNUM HAL_| NTERRUPT_GPI 06 23
#def i ne CYGNUM HAL_| NTERRUPT_GPI O7 24
#def i ne CYGNUM HAL_| NTERRUPT_GPI C8 25
#def i ne CYGNUM HAL_| NTERRUPT_GPI 09 26
#defi ne CYGNUM HAL_| NTERRUPT_GPI 010 27
#def i ne CYGNUM HAL_| NTERRUPT_GPI O11 28
#def i ne CYGNUM HAL_| NTERRUPT_GPI O12 29
#def i ne CYGNUM HAL_| NTERRUPT_SW | NT1 30
#defi ne CYGNUM HAL_| NTERRUPT_SW | NT2 31

The data passed to the ISR is pulled from a data table (hal _i nt er r upt _dat a) which imme-
diately follows the interrupt vector table. With 32 interrupts, the data table starts at address 0x8084.

An application may create a normal C function with the above prototype to be an ISR. Just poke
its address into the table at the correct index and enable the interrupt at its source. The return value
of the ISR 1is ignored by RedBoot.

5.5.5 Memory Maps
The RAM based page table is located at RAM start + 0x4000.

52

NOTE

The virtual memory maps in this section use a C, B, and X column to indicate the caching
policy for the region..

x
@]

B Description

Uncached/ Unbuf f er ed
Uncached/ Buf f er ed
Cached/ Buf f ered
Cached/ Buf f ered
Invalid -- not used
Uncached/ Buffered No wite buffer coal escing

M ni DCache - Policy set by Aux Ctl| Register
Cached/ Buf f er ed Wite Back, Read/ Wite All ocate

Wite Through, Read Allocate
Wite Back, Read All ocate

PFRPRPROOOO !
PFROORROO !
PORPORORO

Physi cal Address XCB Size (M B) Description

0x00000000 0x00000000 010 32 SDRAM (cached)
0x10000000 0x00000000 010 32 SDRAM (al i as)
0x20000000 0x00000000 000 32 SDRAM (‘uncached)
0x30000000 0x00000000 010 32 SDRAM (dat a coherent)
0x48000000 0x48000000 000 64 PCl Data
0x50000000 0x50000000 010 16 Fl ash (CS0)
0x51000000 0x51000000 000 112 Cs1 - Cs7
0x60000000 0x60000000 000 64 Queue Manager
0xC0000000 0xC0000000 000 1 PCl Controller
0xC4000000 0xC4000000 000 1 Exp. Bus Config
0xC8000000 0xC8000000 000 1 Msc CPU IO
0xCC000000 0xCC000000 000 1 SDRAM Confi g

5.5.6 Platform Resource Usage

The IXP425 programmable OStimer0 is used for timeout support for networking and XModem file
transfers.

53

Index

B
BOO T P .. 7
enabling on Red Hat LinuxX.........c.ooiiii i e 9
C
Ol e 7
commands
070) 141010 4 I 15
(670) 41 1015 A4 1 2 16
AOWNI0Ad. 19
ST 1330 14
P 20
FlasSh TMAZE SY S I L.ttt ettt et et ettt et e e e e 20
055 4TS, 1 16
commands and EXAMPLESoinuii ittt 13
configuration
0TS0 8
7T 08T 1y 2 7
configuration and control
flash-Dasedo 23
configuration eXPort fIleSo.oii i e 30
configuring the RedB0oOt enVIroNmMent.oouiiiiii i e e eaaans 7
CONNECEIVILY COMMANAS\ttt ettt et et e et e e et e et et e e e e e et e e e enaeeneeenas 16
L7241V 10 6
D
DH P . 7
enabling on Red Hat LinuxX ... e 9
DNS
enabling on Red Hat LinuxX.........c.ooiiii e e 10
DINS J0OKUPS ..ottt e e e e 8
download commANdSoouiiiii i 19
E
BCOSCOMI T . ..ttt ettt et 29
EdItiNg COMMEANGS ...\ .eeitt et e e e ettt e et e e 14
envIironment CONTIGUIATIONo...t ittt ettt et et e e e e e et e e e e aeeeaaes 7
EXECULINE PIOGTAIIIS .. .t eeete et tentee et e et ettt e et e et e e a e e et e e et e e et e et e e e e e et e e aee et e enneeens 27
F
feonfig command ... e 8
1S COMMEANAS e 20

54

flash and/or NEtWOTKING SUPPOTLueiit et e e et e e e e e aeeenans 7

flash image System COMMANAS.......o.uiii et e e e e e e eans 20
flash-based configuration and cONtrol.............oooiiiiiiiii e e 23
G
(€D B 37070181115 (o) 4 15 T) 8
GDB STUDS ..ttt e e e 67
geNeTal COMMEANGASttt ettt ettt e e e e e e e e aaans 16
H
host NEtWOTK CONTIGUIAtIONottt e e et eenans 8
|
installing and testing
Intel GRG ... 48
INtel IXDP ..o 44
Intel IXDPA6S 35
Intel IXDPGA2S . . e 51
Intel(r) Next Generation of Network Processors (Code Name Hamoa) Reference Platform... 39
installing and testing RedBoot....... ... 35
installing RedBoot
ENETAL PTOCEAUIES e ettt ettt e e e e e e e ettt et e et e e e eaeans 6
Intel GRG
Installing and teStING ...t e 48
Intel IXDP425
Installing and teStING ...t e 44
Intel IXDP465
Installing and teStING ...t e 35
Intel IXDPG425
Installing and teStING ...t e 51
Intel(r) Next Generation of Network Processors (Code Name Hamoa) Reference Platform
Installing and teStING ...t e 39
T 1 L I 1 o1 7-8
N
NEtWOTK CONTIGUIAtION\ttt e e e e et e e aeeanans 7
8T] 8
NEtWOTK devICe dETECTION ...\ttt e e e et e 12
MW OTK G WY ...ttt ettt ettt e et et e e 11
NETWOTK VETTIICAtIONt e e e 11
networking and/or flash SUPPOTt ... e 7
P
persistent state flash-based configuration and control ... 23

55

R

rebuilding RedBOOt.o s 29
Red Boot

OLHING STATTEA ..ottt e et e e e 6
Red Hat Linux

enabling TEFTP 0N VEISION 6.2,ottt ittt e e e e et e e e e e eaeenneans 9

enabling TEFTP 0N VEISION 7. ...ttt e et et e e e e eeaeenaeaas 9
RedBoot

commands and EXAMPLESouiiit it e 13

EdItING COMMEANGSntiitt ettt ettt e et et e e e e e et e e e e e e eaeenaees 14

eNVIronmMent CONFIGUIATIONttt ittt e e et et e et e e et e e e e aeeeaeeaneans 7

EXECULING PIOGIAIIIS ettt eeene et eteete et et et et et et et e e e et et e e e e e e e e e et e e e e a e eeeeenes 27

INStAlling and tESTINE ...ttt e e 35

1T 0] U1 16 1 29

L0881 32
RedBoot installation

EENETAL PTOCEAUIES . ..o u ittt ettt ettt et et et e et e e et e e et e e e e ae e eaeenneans 6
RedBoot NetWOTK GateWay.oiuiii i e 11
RedBO0O0t™S CAPADIIItIESuuttiieit ettt ettt e e e et e e et e 6
T
target Network CONTIGUIAtIONiet it e e et e eeae e 7
0 O 7
L7S] 0 T 7-8
TFTP

enabling on Red Hat LinuxX 6.2 ...t e aae s 9

enabling on Red Hat LinuUX 7... ..o e e e aaea s 9
TETP COMMANGS ..« ..ttt e e e e et et e eaes 8
U
L P 7
updating RedBOot.o e 32
USET INEETTACE ...ttt e e e e 7
\'}
Verification (NEEWOTK)o e e e e e 11

56

